SoNick – the ESG battery

ESG (Environmental, Social, and Governance) is a term that is often used by ethical investors to evaluate a company’s sustainable and ethical performance when they are investigating the long term investability of a company.

A crucial part of our new energy transition is the usage of batteries to store energy, either as backup power, to stabilize the grid or in EV’s. This transition will involve trade-offs and by adhering to ESG principles companies can make sure their governance covers factors that make sure that the net result of this transition is positive from the environment and social angles.

Continue reading “SoNick – the ESG battery”

Domestic Case Study using SoNick batteries – SA

This domestic installation in rural South Australia was designed to run as a grid minimisation installation. Although the grid remains connected it is rarely used to power the house, although excess power is exported to take advantage of the feed in tariff available.

Before the battery installation this household had a 5 kW solar PV system installed with a Fronius solar inverter.

The battery installation was done in stages as requirements changed.

The original battery installation had one 9.6 kWh SoNick battery with 2 Victron 3 KVa Multigrid inverters and a Victron colour controller for communication.

Continue reading “Domestic Case Study using SoNick batteries – SA”

Battery Recycling

One of the things that you should consider when putting battery storage on your home is whether or not the battery will be recyclable at the end of its life.
Recycling batteries at the end of their life has a number of benefits:

  • It enables the recovery and reuse of materials including lead, iron, plastics, aluminium, copper, lithium, cobalt and electrolyte
  • It diverts toxic and hazardous materials from landfill
  • It ensures that batteries are managed safely
  • There may be a financial return (depending on the battery type).

Often, one of the reasons that people put solar panels on their house and put in battery storage to collect the excess usage is to protect the environment and reduce the need for coal powered power stations. This can be counterproductive if you choose a battery that is made from toxic materials or has components that can’t be recycled at end of life of the battery.

When batteries go to landfill toxic substances can cause damage to the waste stream, waterways, humans and the general environment. This can be nickel, cadmium, lead or lithium ion.

Recycling of energy storage batteries is a current weakness in the industry for many battery technologies.

Continue reading “Battery Recycling”

Comparing battery technologies

Until recently lead acid batteries have been the major player in the energy storage industry, particularly for off grid installations but they have serious limitations in terms of requiring customer maintenance and of course they are made from toxic materials.

Recently, Tesla’s lithium ion batteries have received a lot of attention due to their advertised low price and excellent marketing, however the lithium ion batteries are now receiving attention due to their fire risk on the release of embodied energy. Lithium ion batteries have a smaller operating range than most other batteries and won’t operate efficiently above 35 – 40°C. Also, lithium is a toxic material and is in limited supply and at this stage can’t be recycled effectively.

There are some new technologies coming onto the market, such as Redflow’s zinc bromide, Aquion’s sodium ion salt water batteries, improved lead acid and many variations of lithium battery. These each have advantages and disadvantages, both in terms of performance and size.
Depth of Discharge (DOD)

Continue reading “Comparing battery technologies”